Midwest Farmer Adaptive Management Responses to Perceptions of Excess Water-related Risks

Farmer adaptive management responses to changing weather patterns have potential to reduce crop losses and address degrading soil and water resources. This research used farmer survey (n = 4778) and climate data (1971–2011) to model variable influences on farm management practices.

Predictor variables:

Geophysical Context:

- My farm proximity to creek/river/stream
- Marginal soil: County soil capability classification (4-8)

Climate/Recent Weather (last 5 years):

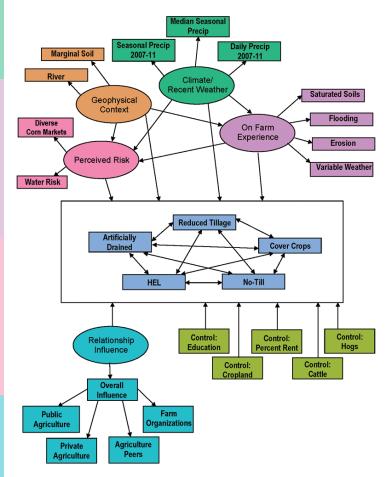
- Daily precip: proportion of Apr-Sep days from 2007-2011 with precip exceeding 99th precentile (heavy rains)
- Seasonal Precip: average rank 2007-2011
 Apr-Sep total precip compared to last 40 years
- Median Seasonal Precip: median Apr-Sep total precip from historical records (1971-2011)

On-Farm Experience:

- Saturated Soils: problems with saturated soils, ponding last 5 years
- Flooding: experienced significant flooding last 5 years
- Erosion: some land experienced significant soil erosion over last 5 years
- Variable Weather: noticed more variable/ unusual weather last 5 years

Perceived Risk:

- Water Risk: latent current "concern" factor constructed from 5 items (increased flooding, more frequent extreme rains, saturated soils and ponded water, loss of nutrients into waterways, soil erosion)
- Diverse Corn Markets: total count (commodity, ethanol, livestock-silage, specialty-value added or organic, seed, other)


Relationship Influence:

- Overall Influence: latent factor constructed from 8 influence items (4 factors below)
- Public Ag: NRCS, state climatologist, Extension, State Dept. of Ag
- Private Ag: seed dealers, farm chemical dealers
- Ag Peers: other farmers
- Farm organizations

Predicted variables:

Self-reported in 2011; percent of land (owned and/or rented):

- Artificially drained through tile or other methods
- Reduced Tillage (e.g. strip, ridge tillage)
- No-till
- Planted to cover crops
- · Highly eroded land (HEL) planted to crops

Figure 1. Structural equation modeling the relationships among farmer adaptation strategies and predictor variables geophysical context, climate/recent weather, on-farm experience last 5 years, relationship influence, and perceived risks; controlling for education, number of acres in cropland, percent rented land; total cattle; total hogs.

These findings were originally published in the Journal of Environmental Quality and can be cited as: Morton, L.W., J. Hobbs, J.G. Arbuckle Jr., and A. Loy. 2015. Upper Midwest Climate Variations: Farmer Responses to Excess Water Risks. *Journal of Environmental Quality* 44:810-822.

Sustainable Corn CAP is a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems." The 11 institutions comprising the project team include: lowa State University, Lincoln University, Michigan State University, The Ohio State University, Purdue University, South Dakota State University, University of Illinois, University of Minnesota, University of Missouri, University of Wisconsin, and USDA-ARS Columbus, Ohio. April 2016; Publication No. CSCAP-0194-2016.

TABLE: Farmer adaptive management responses to on-farm experiences, perceived risk and past climate.¹ KEY: *p \leq .05; ** p \leq .01; *** p \leq .001; HEL = highly erodible land; Pos = the variable caused a positive response

		Adaptive Management Response							
		Artificial				Cover		Plant	
		Drainage		No Till		Crops		HEL	
Concept _	Variables	+ or - 💌	Sig. ▼	+ or - 💌	Sig	+ or - 🔻	Sig 🔻	+ or - 💌	Si 🕶
Geophysical	River	Pos	***	Pos	***			Pos	***
	Marginal Soil	Neg	***	Pos	***	Pos	***	Pos	***
	Saturated Soils	Pos	***	Neg	***	Neg	*	Neg	***
On Farm	Flooding	Neg	**			Pos	**		
Experience	Erosion	Neg	*					Pos	***
	Variable Weather								
Perceived Risk	Water Risk								
	Diverse Corn Markets					Pos	***	Pos	**
	Overall Influence			Pos	**				
Relationship	Public Agriculture			Pos	*				
Influence	Private Agriculture					Neg	***		
	Farm Organizations								
	Agriculture Peers								
	Artificial Drainage					Neg	***	Neg	***
Other Adaptive	No Till					Pos	***	Pos	**
Practices	Cover Crops	Neg	***	Pos	***			Pos	***
	Plant HEL	Neg	**	Pos	***	Pos	***		
	Education	Pos	***	Pos	***				
	Cropland								
Demographics	Percent Rented Land	Pos	***			Neg	***		
	Cattle	Neg	**			Pos	***	Pos	*
	Hogs	Pos	**					Pos	*
Climate	Median warm season								
	precip	Pos	***	Pos	***			Pos	***
Daily Extreme	Great Lakes	Pos	**						
Precip Frequency	Upper Miss (MN/WI)	Pos	**						
	Missouri	Pos	***						
Warm season									
Precip Anomaly	Great Lakes	Neg	***	Neg	*				
(Increased									
Wetness	Ohio	Neg	**			Neg	**	Neg	*
Last 5 yrs	Upper Mississippi (IL)								
relative to past	Upper Mississippi (IA)			Pos	***			Pos	***
40 yrs)	Upper Mississippi (MN/WI)	Neg	***	Pos	*				
	Missouri	Neg	***	Pos	***			Pos	***
Daily x Seasonal	Upper Mississippi (IL)					Neg	*		
Precip	Missouri			Neg	***			Neg	***
	Error Variance		0.281		0.483		0.184		0.234
	Gelman-Pardoe R		0.451		0.318		0.144		0.288

¹ Random sample survey; N=4778 farmers, 11 states. This model examined six regions: Great Lakes; Ohio; Missouri; Upper Mississippi (IA); Upper Mississippi (IL); and Upper Mississippi (MN/WI). Only regions with significant climate and weather results are shown in the table.

