Reducing Variation of Gas Flux Measurements at the Field Scale Felix Heitkamp^{1,2}, Rattan Lal¹, Hermann F. Jungkunst²

INTRODUCTION

Numerous studies investigated management effects on greenhouse gas (GHG) fluxes (Liu and Greaver 2009). High variation, especially of N₂O fluxes, has been observed. Variation is often up to 300% within homogeneously managed sites under on-farm conditions (Matthieu et al. 2006). Such high variability hampers our ability for precise upscaling from plot measurements to local or regional scales. The objectives of this study are to:

(i) quantify the number of closed chambers necessary to achieve a certain variation; (ii) outline a sampling scheme to reduce the number of necessary measurements and (iii) relate flux variability to variation in soil properties.

MATERIALS & METHODS

<u>Site:</u>

- Waterman Farm, Columbus, OH
- Conservational-till corn monoculture application (2 heifers ha⁻¹)
- Gentle slope of 1-5 degree
- Gas sampling
- 40 closed chamber were distributed on two "transects" (Figure 1) by stratified random design
- All chambers were sampled for gas flux (CO_2 , CH_4 , N_2O) analysis four times in over two weeks
- Soil sampling
- At sampling dates: three topsoil underneath 20 chambers were taken and the latter moved
- Last sampling date: soil samples taken at all 40 locations
- Soil profiles down to 1m depth were recorded Lab methods
- Undisturbed soil cores will be used for measuring water retention characteristics and bulk density
- Aggregate size distribution and texture will be determined
- Nitrate content, pH and organic matter content will be quantified

Data analysis (Webster and Oliver 1990)

- sample number calculation Theoretical variation
- (repeated Temporal measures) and variograms) autocorrelation will be determined
- Connatural areas will be outlined by principal component analysis

¹Carbon Management and Sequestration Center, School of Environment and Natural Ressources, The Ohio State University ² Landscape Ecology, Faculty of Geosciences and Geography, University Goettingen, Germany

with manure

directly samples

for a certain

spatial (semi-

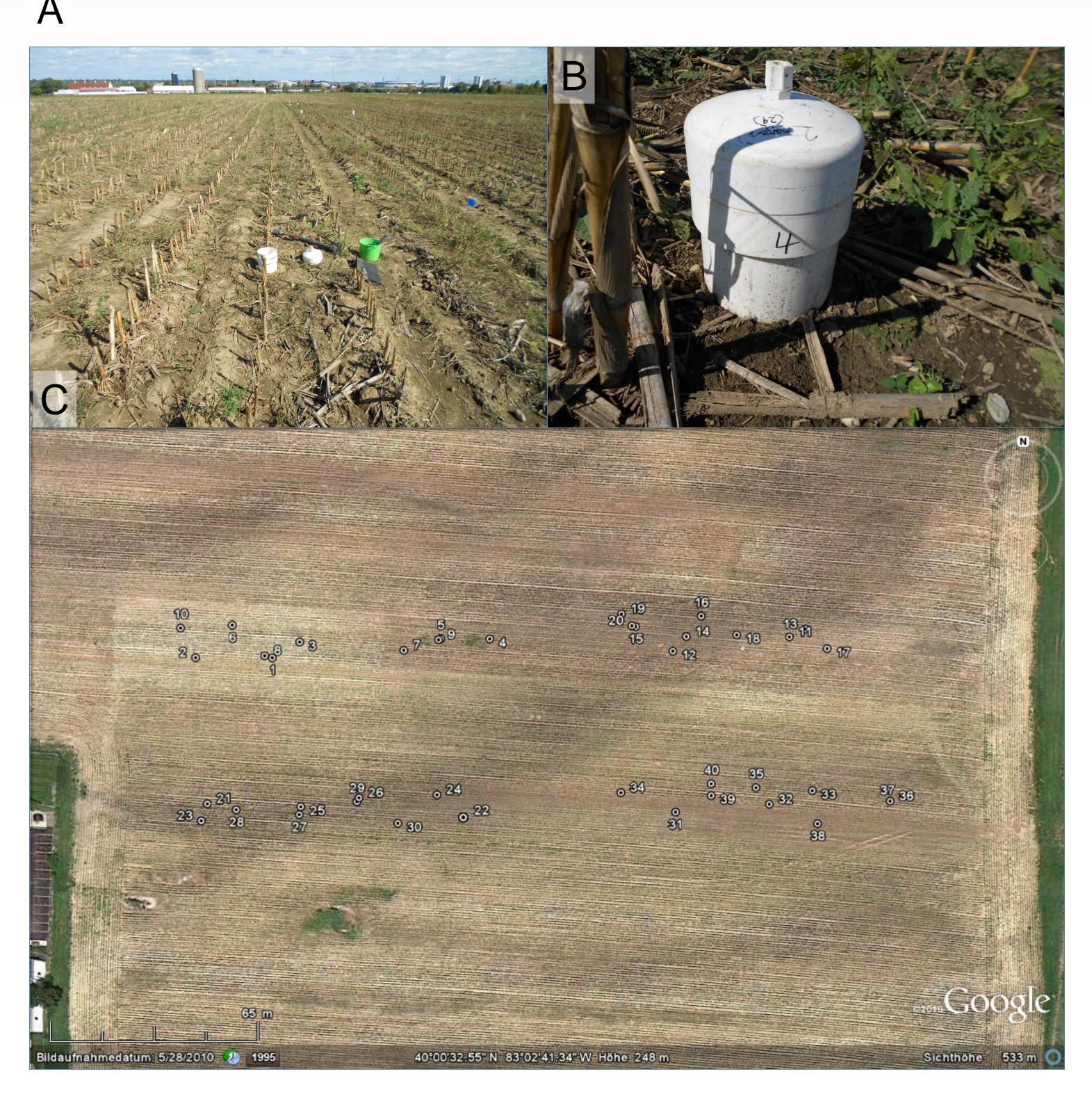


Figure 1: Photo of the study site at Waterman Farm, OH (A), closed chamber in the field (B) and aerial overview with the 40 chamber locations (C).

RESULTS & DISCUSSION

and pH values (Table 1). fluxes (Davidson et al. 2000).

Table 1: Mean values and coefficient of variation (CV) of some soil properties as first results (n = 40).

Property

Bulk density (g cm⁻ Total pore volume Pores > 50 μ m (% c Pores 50-10 µm (% pH (H₂O)*

*Calculated as H+ ions; tpv: total pore volume

OUTLOOK & CONCLUSION

The work will be finished latest end of February 2012. The results from this work will serve as:

- under on-farm conditions.
- sampling points.
- approaches.

planned

ACKNOWLEDGEMENTS

We are thankful to Bassant Rimal for laboratory assistance.

REFERENCES

Davidson et al. 2000: BioScience 50, 667 Liu and Greaver 2009: Ecol Letters 12, 1103 Matthieu et al. 2006: Soil Biol Biochem 38, 941 Webster and Oliver 1990: Oford University Press, 316 pp

First results showed the highest variation in pore size distribution

Both properties are known to affect microbial activity, i.e. gaseous

	Mean	CV (%)	_
1 ⁻³)	1.5	6	_
(%)	48	8	
of tpv)	20	32	
% of tpv)	7	27	
	6.3	39	

• Guide for finding sampling locations for gas flux measure-ments

Estimate of experimental error when using limited number of

• Help in sensitivity analysis for local or regional upscaling

A comparison of the INNOVA 1412 with a gas chromatograph is

United States Department of Agriculture National Institute of Food and Agriculture