Regional Water Challenges and Opportunities to Increase Crop Resilience

Jon Hobbs¹, Lois Wright Morton², J. Arbuckle², Adam Loy³ Resilient Agriculture 2014

¹Jet Propulsion Laboratory, California Institute of Technology ²Iowa State University ³Lawrence University

This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190: Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems

Research Questions

- How do farm management practices vary across the Corn Belt in response to its spatially-varying climate?
- Does perceived risk relate strongly with management practices?
- What socioeconomic factors relate to management practices?
- What local relationships exist between recent weather events and reported management practices?

Data Source

- February 2012 survey of nearly 5,000 producers across the Corn Belt
- Sustainable Corn, Useful 2 Usable (U2U) collaboration
- Item of interest: "In 2011, what percentage of the land you farmed was ... ?"
 - 1. Artificially drained
 - 2. HEL planted to crops
 - 3. No-till
 - 4. Planted to cover crops

United States Department of Agriculture National Institute of Food and Agriculture

Conceptual Framework

United States Department of Agriculture National Institute of Food and Agriculture

CROPS, CLIMATE, CULTURE AND CHANGE

Suite of Practices

High Use

Low Use

United States Department of Agriculture National Institute of Food and Agriculture

CROPS, CLIMATE, CULTURE AND CHANGE

Unusually Wet/Dry Seasons

Percentile Rank • 30 0 40 50 0 60 . 70 . . 80 • 90

2007-2011 Warm Season Precipitation Anomaly

Figure: Seasonal-scale precipitation patterns for 2007-2011.

United States Department of Agriculture National Institute of Food and Agriculture

Key Findings

- Adopting a suite of practices is already common.
 - Cover crops, no-till and HEL
- Climate and soil are strongly associated with several practices.
- Economic factors are significant for some practices.
- Local associations with weather events are evident.

Key Findings

Weather and climate interaction

	Dry Climate	Wet Climate
Unusually Dry Growing Season	Drought resilience	Resilient practices to retain soil moisture
Unusually Wet Growing Season	Economic drivers make marginal land productive	Vulnerable to prolonged periods of saturated soils

 Daily-scale and seasonal-scale extremes present different challenges but also interact.

Acknowledgments

- Comments from Lori Abendroth, Rick Cruse, Matt Helmers, Tom Kaspar, and Eileen Kladivko have aided this research.
- This research was supported by USDA-NIFA Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation on Corn-based Cropping Systems project no. 2011-68002-30190.
- Survey data were produced in collaboration with USDA-NIFA Useful to Usable (U2U) Award no. 2011-68002-30220.
- Additional data were provided by the Iowa Environmental Mesonet.
- Copyright 2014 California Institute of Technology. Government sponsorship acknowledged.

United States Department of Agriculture National Institute of Food and Agriculture