CLIMATE CHANGE AND AGRICULTURE IN THE UNITED STATES

Jerry L. Hatfield USDA-ARS Resilient Agriculture 2014

United States Department of Agriculture National Institute of Food and Agriculture

This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190: Cropping Systems Coordinated Agricultural Project: Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems

- **IMPACTS OF CLIMATE CHANGE ON GRICULTURAL PRODUCTIVITY CAN BE OFFSET**
- Utilizing improved genetics
- Reducing soil erosion and increasing infiltration
- Improved nutrient management
- Better weather forecasts
- Changing cropping systems

CLIMATE VS WEATHER

- × Climate determines where we grow a crop
- × Weather determines how much we produce

CROP PRODUCTION

US GRAIN PRODUCTION

CLIMATE FACTORS

× Inputs

- + Temperature
- + Precipitation
- + Solar radiation
- + Carbon dioxide

Indirect Insects Diseases Weeds

Soil is the underlying factor as a resource for nutrients and water

CARBON DIOXIDE INCREASES

TEMPERATURE CHANGE BY DECADE

OBSERVED U.S. TEMPERATURE CHANGE

and the Environment

OBSERVED INCREASES IN FROST-FREE SEASON

National Laboratory for Agriculture and the Environment

PROJECTED TEMPERATURE CHANGE

OBSERVED U.S. TRENDS IN HEAVY PRECIPITATION

OBSERVED CHANGE IN VERY HEAVY PRECIPITATION

INCREASING HEAVY DOWNPOURS IN IOWA

SPRING PRECIPITATION (AMES)

The increase in spring precipitation has decreased the number of workable field days in April through mid-May across lowa by 3.7 in 1995 to 2010 compared to 1979-1994

EROSION: HOW MUCH IS TOLERABLE

National Laboratory for Agriculture and the Environment

THE WIND BLOWS TOO

CLIMATE PROJECTION: WETTER SPRING, HOTTER SUMMER

 Iowa climate projection is average May-June rainfall and July-August temperature using 9 downscaled climate scenarios, spanning 3 GCMs and 3 emissions scenarios.

 Training period for downscale method is 1960-1999.

How is agriculture going to cope with the increasing variability in the within season weather and trends toward a warmer climate with shifting seasonality in precipitation?

PROJECTED PRECIPITATION CHANGE BY SEASON

TEMPERATURE CHANGES

Projections of Surface Temperatures

Nationa

National Laboratory for Agriculture and the Environment

NIGHTTIME TEMPERATURES

Laboratory for Agriculture and the Environment

TEMPERATURE EFFECTS ON EVAPORATION

$$ET = \frac{\rho c_p (T_0 - T_s)}{r_a} + \frac{\rho c_p [e_s(T_0) - e_a]}{\gamma (1 + \frac{r_s}{r_a})r_a}$$

WHAT DOES ALL OF THIS MEAN TO THE PRODUCER?

- Begin to consider all aspects of the crop production system as an integrated set of components
- × Utilize the following examples as guides

CROP YIELD VARIATION

SOIL WATER USE RATES

National Laboratory for Agriculture and the Environment

GOOD SOILS = GOOD YIELDS

Soybean yields across lowa, Kentucky, and Nebraska

MAIZE COUNTY YIELDS

National Laboratory for Agriculture and the Environment

TEMPERATURE RESPONSES

TEMPERATURE EFFECTS ON CORN PHENOLOGY

Rhizotron study with warm chamber 4C warmer than normal chamber with simulation of Ames IA temperature patterns.

IMPACT OF WARM NIGHTS ON CORN AND SOYBEAN PRODUCTIVITY

CROP YIELDS DECLINE UNDER HIGHER TEMPERATURES

APPLICATION OF THESE RESULTS

- Producers will not deal with a single climate factor, exposed to all factors, temperature, precipitation, carbon dioxide, solar radiation
- × What is in the producers control?
- Concept that we must begin the process of understanding agriculture systems as the interactions of genetics, environment and management.

CONCEPT OF G X E X M

FOUNDATION OF CLIMATE RESILIENCE FOR AGRICULTURE IS BASED ON:

- × Soil and soil water availability
- Yield variation within fields and among years is due to soil water availability which exaggerates the temperature effect.
- Soil water increases the ability of the crop to utilize nutrients

SOIL EROSION

Degrading the soil resource decreases the water holding capacity

Hudson, 1994

Organic Matter Effects on Available Water Capacity

OM increase from 1% to 4.5% AWC doubles! Data from Soil Survey Investigation Reports (surface horizons only)

- Sands: FL (n = 20)
- Silt loams: IA, WI, MN, KS (n = 18)
- Silty clay loams: IA, WI, MN, KS (n = 21)

Sands AWC = 3.8 + 2.2 (OM) $r^2 = 0.79$

Silt loams AWC = 9.2 + 3.7(OM) $r^2 = 0.58$

Silty clay loams AWC = 6.3 + 2.8 (OM) $r^2 = 0.76$

Hudson, B. D. 1994. Soil organic matter and available water capacity. J. Soil Water Conserv. 49(2):189-194.

Na La for

SENESCENCE INDEX

The longer we can maintain green leaf area during the grainfilling period the higher the yield

CONSERVATION AGRICULTURE BENEFITS

× Short-term

- Reduce soil water evaporation
- Increase infiltration of rainfall or irrigation events
- Reduce the overall of evapotranspiration rate if plants are grown in standing stubble

× Long-term

- Increase the soil water
 holding capacity through
 improved organic matter
 content
- Increase water availability to the crop
- + Increase rooting depth

CLIMATE RESILIENCE

- Will have to rely on capturing, storing, and making available maximum amount of soil water to the crop during the growing season
- Implement cropping system which increase the organic matter content of the soil and reduce erosion under the shifting precipitation patterns

CLIMATE FACTORS

× Inputs

- + Temperature
- + Precipitation
- + Solar radiation
- + Carbon dioxide

Indirect Insects Diseases Weeds

Soil is the underlying factor as a resource for nutrients and water

GOOD NEWS

- You can't control the weather but you can manage the soil and management inputs to increase climate resilience
- Aggressive soil management to improve organic matter (soil water storage and infiltration rates) will pay dividends in improved yield stability and water and nutrient use efficiency

IMPROVED SOIL MANAGEMENT PRACTICES E IMPLEMENTED

- **Decreasing tillage**
- Increasing the retention of crop residue
- × Adding cover crops to provide for more ground cover and residue
- Changing a crop rotation to diversify crops
- I am not convinced any of these can work on × my farm

