Root and shoot biomass and nutrient composition in a winter rye cover crop

Swetabh Patel *, John E. Sawyer, John P. Lundvall, and Jeena I. Hall Department of Agronomy, Iowa State University

INTRODUCTION

Nitrogen loss from applied fertilizer can be significant economic and environmental quality issues in corn (Zea mays L.) production systems. The Iowa Nutrient Reduction Strategy science assessment identified winter cereal rye (Secale cereal L.) as a cover crop that can significantly reduce nitrate-N loss (31% nitrate-N concentration reduction) from the cornsoybean [*Glycine max.* (L.) Merr.] system. Cereal rye, through its fibrous root system, can explore the soil and take up inorganic-N. In order to further understand N uptake and effectiveness as a cover crop for scavenging and recycling N, there is a need to study the amount of root/shoot biomass production and N and C partitioning at time of rye control.

	Biomass				Carbon		Nitrogen		
N rate	Shoot	Root	Mean	Shoot	Root	Mean	Shoot	Root	Mean
lb/acre					- Ib/acre				
0	1095	485	790	443	204	324	19	4	12
120	1287	464	875	518	195	357	23	4	13
200	1301	438	869	529	184	357	23	4	13
Mean	1227a	462b		497a	194b		22a	4b	
	ffect of plant	component s	significant. Com	ponent mean wi	th different le	tter is significan	tly different <i>, P</i> ≤	≤ 0.05.	
only main e	•	•		ponent mean wi at time of in-		U	ollowing soy		
only main e able 2 . F	•	crop plant o		•	growth tub	U	ollowing soy	pean.	Mean
only main e able 2 . F N rate	Rye cover c	crop plant o Biomass	components	at time of in-	growth tub Carbon	e removal, fo	ollowing soyt	bean. Nitrogen	Mean
only main e able 2 . F N rate	Rye cover c	crop plant o Biomass	components	at time of in-	growth tub Carbon Root	e removal, fo	ollowing soyt	bean. Nitrogen	Mean 18
only main e able 2 . F N rate Ib/acre	Rye cover o Shoot	crop plant o Biomass Root	components Mean	at time of in-	growth tub Carbon Root - Ib/acre	e removal, fo Mean	ollowing soyk	bean. Nitrogen	
only main e Table 2 . F N rate Ib/acre 0	Rye cover of Shoot	rop plant o Biomass Root 575	Mean 962	at time of in- Shoot 538	growth tub Carbon Root - Ib/acre 246	e removal, fo Mean 392	ollowing soyk Shoot 30	bean. Nitrogen	18

MATERIALS AND METHODS

This study was conducted at the Ames, IA CSCAP cover crop site. Corn was grown in rotation with soybean and winter cereal rye was drilled (1bu/acre in 7.5 inch row spacing) following corn (22 Oct. 2014) and soybean (30 Sept. 2014) harvest. Two ingrowth tubes per plot, 2.2 inch diameter (0-24 and 0-12 inch depth following corn and soybean, respectively), were installed between rye rows shortly after seeding. The tubes were collected the next spring at rye control (following corn 8 May 2015). Root and shoot biomass was analyzed for total C and N. Only main effect of plant component significant. Component mean with different letter is significantly different, $P \le 0.05$.

- N rate	Following corn			Following soybean			ratio. Following corn Following soybe				
	Biomass	Carbon	Nitrogen	Biomass	Carbon	Nitrogen	N rate		Shoot	Root	Shoot
b/acre							lb/acre				
0	2.6	2.5	5.6	2.3	2.2	5.9	0	52	23	49	17
120	2.8	2.7	6.6	2.2	2.0	5.6	120	53	22	50	18
							200	47	23	41	15
200	3.1	3.0	6.2	2.7	2.6	6.3	Mean	51a	23b	46a	17b
Mean	2.8	2.7	6.1	2.4	2.2	6.0	Only main effect of plant component significant.				

RESULTS AND DISCUSSION

- There was no effect of prior N fertilizer rate on root and shoot biomass, C, and N (P ≤ 0.05) (Tables 1 and 2). This was likely due to low residual profile soil nitrate-N concentration at the time of rye seeding and in the spring (data not shown).
- The rye biomass, C, and N (mean across N rates applied to corn) were significantly

different between the root and shoot following both corn and soybean (Tables 1 and 2), with more biomass, C, and N in rye shoots than roots.

- The shoot:root ratio of rye biomass and C was lower than for N (Table 3), with about 30% of total plant C and 14% of N in the root biomass. Nitrogen in the roots was only 4 to 5 lb N/acre, with 22 to 32 lb N/acre in the shoots.
- The C:N ratio of root material was high (46 to 51 ratio) and more than double the shoot material (17 to 23 ratio) (Table 4).

CONCLUSIONS

- The shoot biomass of the rye was more than twice the amount of root biomass.
- The largest fraction of total N uptake and C assimilation by the rye cover crop was contained in the aboveground shoot biomass.
- Measurement of the aboveground rye biomass provided a reasonable estimate of rye cover crop N uptake and also the main N amount available for recycling.
- The C:N ratio of root material was high enough to likely cause N immobilization.

<u>Acknowledgements</u>: Appreciation is extended to the research farm personnel and undergraduate students for assistance with the research.

This research is part of a regional collaborative project supported by

the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems"

Coordinated Agricultural Project (CAP): Climate Change, Mitigation,

and Adaptation in Corn-based Cropping Systems" sustainablecorn.org

United States Department of Agriculture National Institute of Food and Agriculture

USDA