Comparison of soil quality from three on-site farms in Ohio

Mukherjee, A.1*, and Lal, R.1

1: The Ohio State University, *: mukherjee.70@osu.edu

Introduction and Rationale

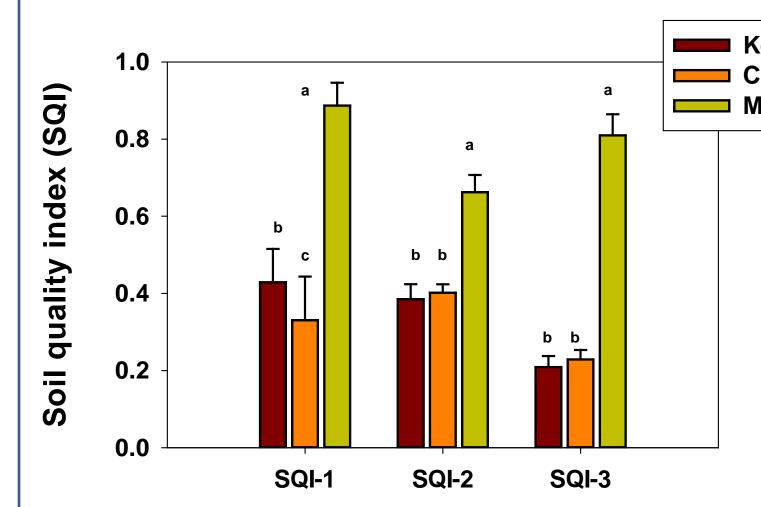
The purpose of conducting on-farm field research is to develop fact-based answers to farming's challenging questions and generate targeted "real world" data. This study is a comparative assessment of quality of one muck or organic (Mc), and two mineral (CrB, and Ko) soils. While Mc and CrB were compared for long and short-term tillage operations, Ko soil had cover crop (peas and turnips) and no cover crop or control management. Specific objective includes changes in soil quality under different management practices (CT: conventional tillage, NT: no-tillage, CC: cover crops, NCC: no-cover crops) and cropping systems on soil quality.

Experimental Procedure

- 1. Soil samples from on-farm sites were collected in Logan county, Ohio [organic (Mc), and a mineral (CrB)], and from Franklin county, Ohio (Ko).
- 2. Samples were obtained from 0-10, 10-20, 20-40, and 40-60 cm depths.
- 3. Soils were analyzed for different soil properties including acidity (pH), bulk density (BD), available water capacity (AWC), soil organic C (SOC) and nitrogen (N) concentrations.
- 4. Soil quality index (SQI) were calculated from three methods.

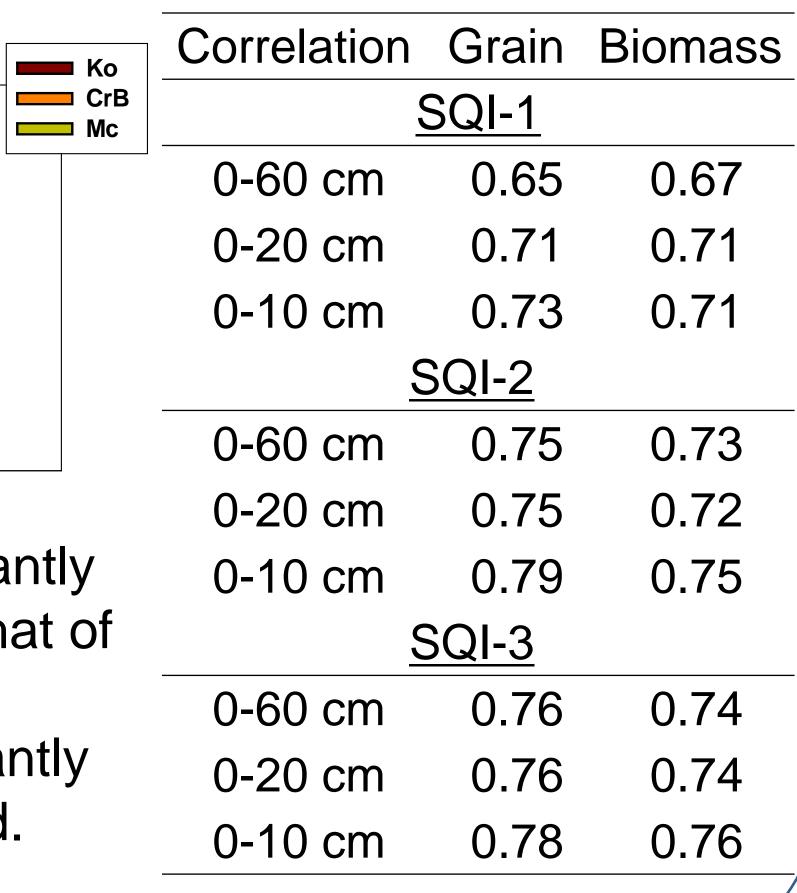
Results and Discussion

Soil		рН	BD	AWC	SOC	N	Grain*
			Mg m ⁻³		%		(bu/acre)
<u>Mc</u>	CT	7.4a	0.6b	209a	15.5a	1.0a	154b
	NT	7.3a	0.6b 0.6b	287a	14.8a	0.9a	259a
<u>CrB</u>			1.4b				
	NT	7.3a	1.6a	25b	2.2b	0.2b	132a
							* Corn


- 1. Organic or muck soil (Mc) had significantly improved soil parameters than those of the mineral soil (CrB).
- 2. Long-term tillage did not affect properties of the native organic or muck (Mc) soil.
- 3. The CT significantly affected BD, and AWC of CrB soil.
- 4. The NT increased corn grain yield in Mc soil.

Soil		рН	BD	AWC*	SOC	Ν	Grain*
			Mg m ⁻³		%		(bu/acre)
<u>Ko</u>	CC	5.7b	1.3a	38a	2.5a	0.3a	68a
	NCC	6.7a	1.5a	38a 39a	2.3b	0.2a	73a
							*Soybean

- 1. Cover crops significantly decreased soil pH and increased SOC concentration compared to those of control.
- 2. Increase in SOC concentration even over a short period of one season could be associated with high input of biomass-C, and changes in microbial activity.
- 3. Soybean grain yield was relatively higher under CC than under control.


Results and Discussion

Soil Quality Index = Rating of Soil (based on soil properties)**

1. Muck soil had significantly higher soil quality than that of mineral soils.

2. All SQIs were significantly correlated with crop yield.

**Comparison of soil quality index using three methods; PLOS ONE; Accepted, in press (2014); Mukherjee, A., and Lal, R.

Conclusions

- 1. Further research needs to assess whether or not these increments are temporal as the CT practice in CrB and CC in Ko were introduced only a year ago.
- 2. Some improvements in soil characteristics are positive even after one season of establishing selected cover crops, so growers are encouraged to try further.
- 3. In order to effectively predict particular crop yield one must include soil fertility and microbial parameters in the model of SQI.

Acknowledgements

This research was supported by the USDA-NIFA, Award number: 2011-68002-30190, "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems" (sustainablecorn.org).

This research is supported by the United Soybean Board, Award No. 1161, and is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems"

sustainablecorn.org

