Early cover crop planting effects on crop yields and environmental benefits

Andrea Basche*, Fernando Miguez*, Sotiris Archontoulis* and Tom Kaspar^

*Iowa State University Department of Agronomy

^USDA National Laboratory for Agriculture and the Environment

- Farmers in Iowa specifically name cover crop fall establishment as a major management challenge
- There is often very little time post corn or soybean harvest to establish a cover crop that will grow enough to survive the winter or for a producer to deem it worthwhile of the effort and costs

Objective

To determine how <u>earlier cover crop planting</u>
<u>dates impact</u> cash crop yield, cover crop growth
and subsequent environmental benefits

Results

Average for five locations over 2002-2013	No Cover Crop	Cover Crop Plant Late Sept	Cover Crop Early Plant Sept 1
Avg corn yield bu/acre	187	187	186
Avg soybean yield bu/acre	43	43	44
Rye cover crop lb/acre		1890	3925
% Organic carbon improvement in topsoil		4%	9%
% Erosion prevented	_	14-22%	23-32%
% Reduction in Nitrate loss	_	11%	24%

Experimental Design

We utilized a computer simulation that represents the dynamics of agricultural fields. Such models are predictive tools that help understand complex systems such as crop and soil interactions with the weather. Below is a simple diagram of how the model operates.

Equations represent:

Plant growth

Soil processes

Inputs

Predictions tell us:

Crop yield

Nitrate loss

Outputs

We chose five different locations in lowa to try to detect differences in cover crop impacts. The below descriptions represent a few of the input values we used in the model.

Summary

- Only minor to positive cash crop yields were predicted with a cover crop
- We also did not observe major differences in cover crop impacts across different soil types, climates and slopes in lowa
- How much erosion can be prevented with the use of cover crops? 14-32% depending on planting date and other factors
- What planting dates are needed to achieve those growth levels? Earlier is better: planting the cover crop about three weeks earlier (by early September) doubled the average biomass over a 12 year period
- Improved management options and technologies are needed to achieve optimal cover crop growth

Acknowledgments

Thank you to Tom Kaspar and his USDA-ARS team for their help in data collection and utilization required to establish our model simulations.

This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems" sustainablecorn.org

