Preliminary life cycle comparison of corn production with and without tillage Ao Li, Robert Anex, Rashid Rafique, Shashi Dhungel Department of Biological Systems Engineering **Biological Systems** University of Wisconsin-Madison ngineering

Abstract

We present a preliminary comparison of the environmental life cycle impacts of corn production with and without tillage. Impact categories analyzed are SOC, GHG emissions, Energy use, and nitrate leaching. The scope of this study is from maize planting through harvesting at Gilmore City, Iowa. The functional unit is 1 kg of yellow dent corn grain (15.5%) moisture, w.b.). The life cycle inventory model includes not only farm inputs such as seeds, fertilizer, herbicides, and fuel use, but also the emissions and resource consumption related to the production of the inputs. In the absence of complete measured data, the DNDC model was used to predict nitrate leaching, and soil GHG emissions at the field. Soil erosion was not analyzed for this research plot study.

Method & Approach

DNDC Modeling

DNDC was used to predict soil N_2O emission and soil $NO_3^$ leaching. Field data from site at ISU Agronomy and Agricultural Engineering Farm was used to calibrate DNDC and extrapolated to model Gilmore City (due to lack of GHG data from Gilmore City). The calibration results are shown in Figure 1. DNDC model was run for 20 years to predict average N₂O emissions and NO_{3⁻} leaching.

DNDC fails to match one large N_2O emission peak, resulting in a 45% error under estimate of cumulative N_2O emissions. Further analysis will be done to quantify model uncertainty when site-specific experimental data are available.

Figure 1. DNDC model calibration

JNIVERSITY OF WISCONSIN-MADISON

• Life Cycle Inventory

Life cycle inventory includes upstream resource use and emissions associated with farm inputs. Farm input use is estimated for farm-scale practices. Data are from Gilmore site, Ecoinvent database, IPCC Fourth Assessment Report, DNDC model, and literature. Diesel and lubricant use was calculated according to ASAE D497.4 and ISU extension specification of implements and tractor size.

tillage system.

As

 Energy Analysis Energy use varied between treatments mainly due to diesel use in tillage. At Gilmore City, fall primary tillage was to 8 in. using a chisel plow. A less deep primary tillage (6 in.) and secondary tillage (field cultivator to 5 in.) were also modeled to show the sensitivity of energy use to tillage practice. Total life cycle energy use is shown in Figure 2. Nitrogen use is the largest component of energy use. Tillage consumes about twice as much fuel as the no-tillage treatment. GHG Analysis

This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems" August 2012 | sustainablecorn.org

GHG Figure 3, shown in tillage vary between emissions systems due to diesel use and soil GHG emissions.

8 inch depth 6 inch depth

Life Cycle Impact Assessment Energy use, \triangle SOC, GHG emission, and NO₃⁻ leaching are impact categories. Energy use, GHG emissions, and NO₃⁻ leaching are shown in Fig. 4 per kg of corn. Impacts of tillage are lower than those of no-tillage treatment.

1/Yield ((10 Mg corn/ha)⁻¹)

1/SOC ((0.1 Mg C/20 years)⁻¹)

CONCLUSION

- This preliminary variables.
- from this site.

tillage Figure 3. Life cycle GHG emissions

NO3 leaching (0.01kg NO3/kg corn) Figure 3. Life cycle impacts

analysis relies on several simulated

• \triangle SOC is based on DNDC model not calibrated to SOC data

• No-till yield is lower than with tillage in this first year. No-tillage consumed more fossil energy and emitted more total GHGs *per unit corn* on a life cycle basis than tillage. Soil erosion is an important impact that will be modeled in future analysis at landscape scale.

United States Department of Agriculture National Institute of Food and Agriculture