Tillage, Crop Rotation, Nitrogen Fertilizer and Cover Crop Impacts on Greenhouse Gas Fluxes in Ohio

Liming Chen, David Kost, Clayton Dygert, and Warren Dick
The Ohio State University

ABSTRACT

The effects of crop production practices on fluxes of greenhouse gases from soil are not fully understood. Gas fluxes were measured from a field plot study involving the variables of tillage, crop rotation, N fertilizer, and cover crop. Fluxes of greenhouse gases were measured by gas chromatography bi-weekly during the growing season. Emissions of N_2O were decreased by 40% when soils were under NT compared to MT. Application of N fertilizer, however, significantly increased emission of N_2O from the soil. Emission of N_2O from the soybean plots was less than from corn plots. Emissions of CO_2 from plots originally with cover crops were increased as compared with those plots without cover crops. Fluxes of CO_2 and CH_4 were not significantly impacted by fertilizer applications and tillage systems.

INTRODUCTION

Climate change is closely related to the increasing emissions of the greenhouse gases CO_2 , CH_4 , and $\mathrm{N}_2\mathrm{O}$ to the atmosphere, and soils may be a source or sink of greenhouse gases. Greenhouse gases are naturally cycled through soil and are part of the C and N cycles. Agricultural practices may affect the emissions of greenhouse gases from soils to the atmosphere. However, there is little information regarding the effects of tillage, crop rotation, N fertilizer, and cover crop on greenhouse gas fluxes in soils. The objective of this study was to evaluate the impacts of these agricultural practices on greenhouse gas fluxes in a corn field in Ohio.

Figure 1. Installation of greenhouse gas chambers, sampling of greenhouse gases, and determination of greenhouse gases.

MATERIALS & METHODS

A field plot study involving the variables of tillage (NT, notillage and MT, minimum or chisel tillage), crop rotations (CC, corn (*Zea mays*)) after corn and CS, corn after soybean (*Glycine max*)), N fertilizer rates (0 and 225 kg/ha), and rye cover crops (plus or minus) was conducted in a field at Wooster, Ohio. Fluxes of greenhouse gases were measured by gas chromatography bi-weekly during the growing season. Installation of greenhouse gas chambers, sampling of greenhouse gases, and determination of greenhouse gases are shown in Figure 1.

RESULTS & DISCUSSION

Fluxes of CO_2 as affected by crops, tillage, cover crops, and N fertilizers are presented in Figure 2. Results indicate that emissions of CO_2 from plots originally with cover crops were increased by 20% as compared with those plots without cover crops. Fluxes of CO_2 were not changed by crops (corn and soybean), tillage (NT and MT), and N fertilizers.

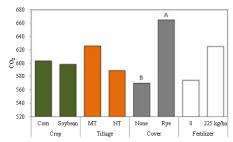


Figure 2. Fluxes of CO_2 as affected by crops, tillage, cover crops, and N fertilizers.

Fluxes of N_2O as affected by crops, tillage, cover crops, and N fertilizers are presented in Figure 3. Results indicate that application of N fertilizer significantly increased emission of N_2O from the soil four fold compared to the control. Emission of N_2O from the soybean plots was much less than from corn plots. Emissions of N_2O from plots under NT were decreased by 40% as compared with those plots under MT. Emissions of N_2O were not impacted by cover crops.

This research is part of a regional collaborative project supported by the USDA-NIFA, Award No. 2011-68002-30190 "Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems"

August 2012 | sustainablecorn.org

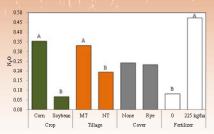


Figure 3. Fluxes of N_2O as affected by crops, tillage, cover crops, and N fertilizers.

Fluxes of CH_4 as affected by crops, tillage, cover crops, and N fertilizers are presented in Figure 4. Results indicate that fluxes of CH_4 were not changed by crops, tillage, cover crops, and N fertilizers.

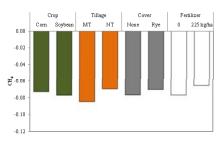


Figure 4. Fluxes of N₂O as affected by crops, tillage, cover crop, and N fertilizers.

CONCLUSION

Total greenhouse gas emissions were decreased when soils were under NT compared to MT. Application of N fertilizer significantly increased emission of N_2O from the soil. Emission of N_2O from the soybean plots was less than from corn plots. Emissions of CO_2 from plots originally with cover crops were increased as compared with those plots without cover crops.

United States Department of Agriculture National Institute of Food and Agriculture