The Architecture of Integration: Coordinated Agricultural Projects

Lois Wright Morton, Iowa State University Sanford D. Eigenbrode, University of Idaho Tim Martin, University of Florida

Agriculture & Natural Resources Science for Climate Variability and Change: Transformational Advancements in Research, Education, and Extension Symposium

Session #5. Translating Climate Science into Actionable Knowledge: The Role of the Social Sciences

ASA, CSSA, SSSA International Annual Meeting Cincinnati, Ohio 2012 October 21-24

U.S. agriculture is increasingly impacted by the effects of a changing climate

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

- 3 Coordinated Agricultural Projects (CAP)
- 115 Pl's across 20 states

New Opportunities and Challenges

The integration of science is essential to:

- 1. Address complex, difficult problems
- 2. Identify processes and structures needed to answer complex questions
- 3. Create new knowledge
- 4. Bi-directional testing & evaluation of new knowledge with stakeholders
- 5. Prepare the next generation of scientists

Directing three separate projects while working to integrate science goals, learn from each other, and finding ways to connect our teams.

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

Team Integration Architectures

Are highly complex and diverse with similarities and differences. Understanding these architectures provide operational guidance to leadership and offer a valuable platform for exploration, innovation, and achieving the practical work of the team.

USDA-NIFA Climate & Corn-based Cropping Systems CAP; 2012 Annual Meeting in Wooster, Ohio.

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

The trend to classify cross-disciplinary research is useful to generate dialogue that illustrates relationships

National Institute of Food and Agriculture

Multidisciplinary

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

United States Department of Agriculture National Institute of Food and Agriculture SUSTAINABLE CORN.ORG

Participatory

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

Interdisciplinary

Non-Academic Knowledge Body

Thematic Umbrella

→ Movement Toward Goal

--- Cooperation

Integration

Discipline

Tress, Tress, & Fry 2004

ASA-CSSA-SSSA 2012

© Wright Morton, Eigenbrode, Martin

Non-Academic Participants

Research Project Goal

Transdisciplinary

CROPS, CLIMATE, CULTURE AND CHANG

United States Department of Agriculture National Institute of Food and Agriculture

ASA-CSSA-SSSA 2012

Categorization serves as a start...

Terminology and framework provides a useful start but doesn't represent complexity of large projects like the USDA-NIFA Climate CAP's

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

PINEMAP

Big Project Integration Architecture

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

•

United States Department of Agriculture National Institute of Food and Agriculture CORN.ORG

PINEMAP

How to cultivate and enhance team capacity to accomplish big science?

Create a team structure that:

- Functionally meets objectives and goals specific to the team
- Has clear connections and lines of accountability between and across individuals
- Places individuals into specific working groups based on their expertise
- Places individuals in "gaps" key roles to help bridge and connect working groups
- Boundaries, but flexible

Traditional Organizational Charts

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

United States Department of Agriculture National Institute of Food and Agriculture

PINEMAP

Organizational Reality

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

Interactions emerge dynamically within a project

Figure 3. TWCA Connections

May, 2012 Report: Transdisciplinary Science at Work Linda Urban, IPT532, Spring 2012

Ways to Document & Understand Team Processes and Integration

Multiple data sources available to identify areas of integration and discover where, when, and how future integration can be encouraged:

- Surveys
- Focus groups
- Qualitative interviews
- Archival analysis of meeting activities and action items/or lack of
- External evaluator observations
- Social Network Analysis
- Ethnography

Baseline Team Assessment

- Online survey of project participants
- Pre-existing multi, interdisciplinary relationships

Collaboration questions modified from the Transdisciplinary Research on Energetics and Cancer Initiative, published in American Journal of Preventive Medicine, 2008

		<u>Never</u>	Once or twice a <u>year</u>	Quarterly	Monthly	<u>Weekly</u>
a.	Read journals or publications outside your primary, secondary, or third disciplines (listed in response to Question #2)	12.4%	21.5%	19.8%	28.9%	17.4%
b.	Attended meetings or conferences outside your primary, secondary, or third disciplines	38.8%	45.5%	12.4%	3.3%	0.0%
c.	Participated in working groups or committees with the intent to learn from researchers in other disciplines	24.8%	40.5%	20.7%	12.4%	1.7%
d.	Submitted grant proposals, <u>other</u> <u>than the CSCAP</u> , in partnership with colleagues or others outside your primary, secondary, or third disciplines	51.2%	36.4%	10.7%	1.7%	0.0%
e.	Received grant funding awards, other than the CSCAP, in partnership with colleagues or others outside your primary, secondary, or third disciplines	57.0%	36.4%	6.6%	0.0%	0.0%
f.	Obtained new insights into your own work through discussion with colleagues from other disciplines	10.7%	26.4%	23.1%	18.2%	21.5%
g.	Modified your own work or research agenda as a result of discussions with colleagues from other disciplines	18.2%	32.2%	28.1%	18.2%	3.3%
h.	Established links with colleagues from other disciplines that led to or may lead to future collaborative work	14.0%	47.1%	18.2%	14.9%	5.8%

Baseline Key Findings & Next Steps

- 1. Learn about each other's science
- 2. Find connections among our sciences
- 3. Ask complex questions that our sciences, when integrated, might answer
- 4. Create clusters of individuals willing to ask new questions and seek new solutions

Options for Unreplicated Pai

Design Experime

e Statistical Analy

ed So WO I

Social Network Analysis (SNA) is a tool that can be used to describe patterns of interactions in a project and to help participants understand and optimize their collaboration.

Sociocentric Network Analysis (SNA) as a Monitoring **Tool for Reflection & Learning**

- 1. Collect data from members
- 2. Create social network diagram
- 3. **Revealed** patterns
- Participatory SNA perceptions of interactions 4.
- Repeat during project life cycle 5.

Highlights the strength of existing networks, as well as challenges of integrating across networks and pulling "unconnected" collaborators into the network.

PINEMAP SNA

•Adams, D

Survey to gather social network data

REACCH SNA (Connections between individuals)

No awareness: You do not know who this person is.

No direct contact: You know who this person is, but do not have direct contact with them. (You might have met them or seen them at a meeting.)

Communication/Coordination: You share (or have shared) information and/or align activities with this person, to support mutually beneficial goals.

Collaboration: You have actively worked together to set common goals, realize a shared goal, or develop integrated knowledge.

Identified wish/need for future interaction: You think there is an opportunity for cooperation or collaboration with this person, but that hasn't happened yet.

Unification/coadunation. You think there is a merging of identities, structure, and culture. Unification through growth.

1. What interaction have you had with each person?

	No awareness	No direct contact	Communication/Coordination	Collaboration	Unification/coadunation	Need for future interaction
Person A	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Person B	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Person C	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Person D	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Person E	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0

Done

Unexplored Territory

Understanding the architecture of integration with our teams, and quantifying or otherwise measuring that structure as we go is helping us venture out into unexplored territory.

© Wright Morton, Eigenbrode, Martin ASA-CSSA-SSSA 2012

Institutional Adaptation

- Institutional change in how we think about and do science, strengthen our capacities to better connect theory, data, and reality
- Integrate science
- Accomplish innovation

Adaptation Needed Across Many Systems

- **1. Resistance** (status quo; manage to resist change disturbance)
- **2. Resilience** (moderate effects but retain form and function after disturbance)
- **3. Transformation** (transition to a new system with different structure and function better suited to new conditions)

Acknowledgements

- Project managers:
 - Lori Abendroth (CSCAP)
 - Dianne Daley Laursen (REACCH)
 - Jessica Ireland (PINEMAP)
- Assessment specialists:
 - Emma Norland (CSCAP)
 - David Meyer (REACCH)
 - Wendy-Lin Bartels (PINEMAP)

Thank You!

sustainablecorn.org

reacchpna.org

pinemap.org

SUSTAINABLE CORN.ORG

